• Medientyp: E-Artikel
  • Titel: IMMU-12. Exploring and modulating the tumour immune microenvironment to facilitate the selection of immunotherapies for paediatric-type diffuse high-grade glioma
  • Beteiligte: Cockle, Julia; Bjerke, Lynn; Mackay, Alan; Grabovska, Yura; Burford, Anna; Molinari, Valeria; Pereira, Rita; Boult, Jessica; Robinson, Simon; Carvalho, Diana Martins; Clarke, Matthew; Titley, Ian; Yara, Erika; Straathof, Karin; Wennerberg, Erik; Becher, Oren; Castro, Maria; Melcher, Alan; Jones, Chris
  • Erschienen: Oxford University Press (OUP), 2022
  • Erschienen in: Neuro-Oncology
  • Sprache: Englisch
  • DOI: 10.1093/neuonc/noac079.305
  • ISSN: 1522-8517; 1523-5866
  • Schlagwörter: Cancer Research ; Neurology (clinical) ; Oncology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title> <jats:p>Immune cells have the potential to selectively eradicate high-risk brain tumours such as paediatric-type diffuse high-grade glioma (PDHGG). We aim to characterize the tumour immune microenvironment (TIME) of intra-cranial syngeneic mouse models of diffuse hemispheric glioma, H3G34 (DHG-H3G34) and diffuse midline glioma, H3K27 (DMG-H3K27). We also demonstrate how an oncolytic reovirus (Reolysin) can “heat-up” the TIME of our syngeneic models. Orthotopic immunocompetent mouse models of DHG-H3G34 (C57BL/6, NRASG12V + shp53 + shATRX +/- H3.3G34R) and DMG-H3K27 (Nestin-Tv-a/p53fl/fl, RCAS-ACVR1R206H + RCAS-H3.1K27M) were profiled using single-cell RNA-sequencing (scRNA-seq) (10x genomics), a 22-colour custom flow cytometry immune panel and spatial transcriptomics. Differential marker expression was validated with immunohistochemistry and immunofluorescence in tissue sections. Syngeneic mouse tumours treated systemically with Reolysin were also profiled to evaluate the effects of the oncolytic virus on the TIME. Cell type predictions in scRNA-seq using singleR, ssGSEA and expression of individual marker genes suggested that the predominant immune cell types within hemispheric tumours were monocytes (11-21%) and macrophages (10-19%) with much smaller proportions of CD4+ and CD8+ T-cells (4-10%). By contrast, much smaller proportions of monocytes (2%) and macrophages (3%) were observed in the H3.1K27M pontine model. Flow cytometry, immunohistochemistry and immunofluorescence validated scRNA-seq immune profiles and characterised signalling of the PD-1/PD-L1 checkpoint pathway. Spatial transcriptomics allowed immune cell populations to be positioned within tumour sections and showed significant co-localization of CD4+ and CD8+ lymphocytes at tumour margins. Treatment of syngeneic mouse tumours with Reolysin resulted in reduced tumour volumes and altered the TIME, in particular increasing cytotoxic T-cell tumour infiltration. Our results highlight immunological heterogeneity within molecular subgroups of PDHGG and demonstrate ability of a systemically delivered oncolytic virus, Reolysin, to “heat-up” the TIME, contributing to a more immune actionable profile. Future work will help to identify optimal combinations for the next generation of immunotherapies in PDHGG.</jats:p>
  • Zugangsstatus: Freier Zugang