• Medientyp: E-Artikel
  • Titel: A CdS nanodipole solar cell
  • Beteiligte: Huang, Fang; Liu, Xiangxin; Wang, Wenjing
  • Erschienen: Wiley, 2015
  • Erschienen in: Progress in Photovoltaics: Research and Applications
  • Sprache: Englisch
  • DOI: 10.1002/pip.2432
  • ISSN: 1099-159X; 1062-7995
  • Schlagwörter: Electrical and Electronic Engineering ; Condensed Matter Physics ; Renewable Energy, Sustainability and the Environment ; Electronic, Optical and Magnetic Materials
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>In this work, we report significant characteristics of nanodipole solar cells that would facilitate the understanding of the mechanism underlying the nanodipole photovoltaic effect. A CdS–CdTe pseudobinary system underwent phase segregation during high‐temperature CdCl<jats:sub>2</jats:sub> treatment in a N<jats:sub>2</jats:sub> atmosphere, giving convincing evidence to prove the existence of wurtzite CdS<jats:sub>0.956</jats:sub>Te<jats:sub>0.044</jats:sub> nanodipoles embedded in zinc blende CdS<jats:sub>0.04</jats:sub>Te<jats:sub>0.96</jats:sub>. On the microscale, a strong synchronous in‐plane piezoresponse by wurtzite CdS<jats:sub>0.956</jats:sub>Te<jats:sub>0.044</jats:sub> was observed using piezoelectric force microscopy in the vertical and lateral modes. Further, it was observed that a piezoresponse and analogous electric hysteresis existing at the grain boundaries varied with an external direct current electrical field; this phenomenon is considered to contribute significantly to the hysteresis behavior of photovoltage. In addition, high‐resolution transmission electron microscopy analysis indicated the formation of hexagonal CdS<jats:sub>0.956</jats:sub>Te<jats:sub>0.044</jats:sub> particles in the film. On the macroscale, the photovoltage of a CdS nanodipole device with a symmetric structure was found to be tunable and became stable after the application of a direct current field. This feature of tunable photovoltage cannot be explained by the classical theory of junction devices. Copyright © 2013 John Wiley &amp; Sons, Ltd.</jats:p>