• Medientyp: E-Artikel
  • Titel: Benthic carbon mineralization on a global scale
  • Beteiligte: Seiter, Katherina; Hensen, Christian; Zabel, Matthias
  • Erschienen: American Geophysical Union (AGU), 2005
  • Erschienen in: Global Biogeochemical Cycles
  • Sprache: Englisch
  • DOI: 10.1029/2004gb002225
  • ISSN: 0886-6236; 1944-9224
  • Schlagwörter: Atmospheric Science ; General Environmental Science ; Environmental Chemistry ; Global and Planetary Change
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (<jats:italic>J</jats:italic><jats:sub>POCα</jats:sub>). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment‐water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#gbc1131-bib-0020"><jats:italic>Cai and Reimers</jats:italic> [1995]</jats:ext-link> as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ∼0.5 GtC yr<jats:sup>−1</jats:sup> (&gt;1000 m water depth (wd)), whereas approximately 0.002–0.12 GtC yr<jats:sup>−1</jats:sup> is buried in the sediments (0.01–0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and <jats:italic>J</jats:italic><jats:sub>POCα</jats:sub> of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.</jats:p>
  • Zugangsstatus: Freier Zugang