• Medientyp: E-Artikel
  • Titel: Cellular anatomy of the mouse primary motor cortex
  • Beteiligte: Muñoz-Castañeda, Rodrigo; Zingg, Brian; Matho, Katherine S.; Chen, Xiaoyin; Wang, Quanxin; Foster, Nicholas N.; Li, Anan; Narasimhan, Arun; Hirokawa, Karla E.; Huo, Bingxing; Bannerjee, Samik; Korobkova, Laura; Park, Chris Sin; Park, Young-Gyun; Bienkowski, Michael S.; Chon, Uree; Wheeler, Diek W.; Li, Xiangning; Wang, Yun; Naeemi, Maitham; Xie, Peng; Liu, Lijuan; Kelly, Kathleen; An, Xu; [...]
  • Erschienen: Springer Science and Business Media LLC, 2021
  • Erschienen in: Nature
  • Sprache: Englisch
  • DOI: 10.1038/s41586-021-03970-w
  • ISSN: 0028-0836; 1476-4687
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted<jats:sup>1</jats:sup>. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input–output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.</jats:p>