• Medientyp: E-Artikel
  • Titel: POLYCHRONY for System Design
  • Beteiligte: Le Guernic, Paul; Talpin, Jean-Pierre; Le Lann, Jean-Christophe
  • Erschienen: World Scientific Pub Co Pte Lt, 2003
  • Erschienen in: Journal of Circuits, Systems and Computers
  • Sprache: Englisch
  • DOI: 10.1142/s0218126603000763
  • ISSN: 0218-1266; 1793-6454
  • Schlagwörter: Electrical and Electronic Engineering ; Hardware and Architecture ; Electrical and Electronic Engineering ; Hardware and Architecture
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p> Rising complexities and performances of integrated circuits and systems, shortening time-to-market demands for electronic equipments, growing installed bases of intellectual property (IP), requirements for adapting existing IP blocks with new services, all stress high-level design as a prominent research topic and call for the development of appropriate methodological solutions. In this aim, system design based on the so-called "synchronous hypothesis" consists of abstracting the nonfunctional implementation details of a system and lets one benefit from a focused reasoning on the logics behind the instants at which the system functionalities should be secured. With this point of view, synchronous design models and languages provide intuitive (ontological) models for integrated circuits. This affinity explains the ease of generating synchronous circuits and verify their functionalities using compilers and related tools that implement this approach. In the relational mathematical model behind the design language SIGNAL, this affinity goes beyond the domain of purely synchronous circuits, and embraces the context of complex architectures consisting of synchronous circuits and desynchronization protocols: globally asynchronous and locally synchronous architectures (GALS). The unique features of the relational model behind SIGNAL are to provide the notion of polychrony: the capability to describe circuits and systems with several clocks; and to support refinement: the ability to assist and support system design from the early stages of requirement specification, to the later stages of synthesis and deployment. The SIGNAL model provides a design methodology that forms a continuum from synchrony to asynchrony, from specification to implementation, from abstraction to concretization, from interfaces to implementations. SIGNAL gives the opportunity to seamlessly model circuits and devices at multiple levels of abstractions, by implementing mechanisms found in many hardware simulators, while reasoning within a simple and formally defined mathematical model. In the same manner, the flexibility inherent to the abstract notion of signal, handled in the synchronous-desynchronized design model of SIGNAL, invites and favors the design of correct by construction systems by means of well-defined transformations of system specifications (morphisms) that preserve the intended semantics and stated properties of the architecture under design. The aim of the present article is to review and summarize these formal, correct-by-construction, design transformations. Most of them are implemented in the POLYCHRONY tool-set, allowing for a mixed bottom–up and top–down design of an embedded hardware–software system using the SIGNAL design language. </jats:p>