• Medientyp: E-Artikel
  • Titel: Abstract 2818: An unbiased tumor cell panel profiling method to identify drug-drug interactions reveals synergy between the CDK4 and CDK 6 inhibitor abemaciclib and the Raf dimer and pan-Raf inhibitor LY3009120 in Ras mutant cancers
  • Beteiligte: Gong, Xueqian; Wu, Wenjuan; Chio, Li-Chun; Pratt, Susan; King, Constance; Webster, Yue; Lallena, Maria Jose; Boehnke, Karsten; Torres, Raquel; Iversen, Philip; Reinhard, Christoph; Chen, Shih-Hsun; Bechmann, Richard; Peng, Sheng-Bin; Buchanan, Sean
  • Erschienen: American Association for Cancer Research (AACR), 2016
  • Erschienen in: Cancer Research
  • Sprache: Englisch
  • DOI: 10.1158/1538-7445.am2016-2818
  • ISSN: 0008-5472; 1538-7445
  • Schlagwörter: Cancer Research ; Oncology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title> <jats:p>Drug sensitivity profiling across genomically characterized panels of tumor cells can identify the molecular determinants of drug response. By testing compound combinations in an unbiased format, the same methodology can be used to identify the genomic context of drug-drug synergy. Based on this principle, we developed an unbiased combination screening protocol to identify synergistic interactions with LY3009120, a novel Raf dimer inhibitor that inhibits all three Raf isoforms (Peng et al. 2015, Cancer Cell 28:384-98). Inhibitors of the Ras-MAPK pathway have proven very effective in the treatment of BRAF-mutant melanoma but are, in general, only partially effective in the treatment of BRAF-mutant colorectal cancer and Ras mutant cancers. LY3009120 combined with various compounds was screened across panels of genomically characterized tumor cells. These screens identified a strong synergy with abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4 and CDK6). Statistical analysis of effects in over 500 cancer cell lines showed that mutations in BRAF or Ras family genes were strongly associated with sensitivity to this combination. Strong synergy was observed in skin, colorectal, lung and pancreatic cancers with Ras/Raf mutations, but was also observed in various cancer cells wild type for Ras pathway genes. This included tumor types sensitive to single agent abemaciclib, such as mantle cell lymphoma, ER+ breast cancers, certain leukemias, squamous non-small cell lung cancer, and/or lung cancer with receptor tyrosine kinase activation. In vitro and in vivo analyses of the effects of the combination treatment on signaling pathways in KRAS mutant cancers led to potential mechanistic explanations for the differing efficacy of the combination, which manifests as regression of tumor xenografts in rodent models.</jats:p> <jats:p>Citation Format: Xueqian Gong, Wenjuan Wu, Li-Chun Chio, Susan Pratt, Constance King, Yue Webster, Maria Jose Lallena, Karsten Boehnke, Raquel Torres, Philip Iversen, Christoph Reinhard, Shih-Hsun Chen, Richard Bechmann, Sheng-Bin Peng, Sean Buchanan. An unbiased tumor cell panel profiling method to identify drug-drug interactions reveals synergy between the CDK4 and CDK 6 inhibitor abemaciclib and the Raf dimer and pan-Raf inhibitor LY3009120 in Ras mutant cancers. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2818.</jats:p>
  • Zugangsstatus: Freier Zugang