• Medientyp: E-Artikel
  • Titel: Why interference phenomena do not capture the essence of quantum theory
  • Beteiligte: Catani, Lorenzo; Leifer, Matthew; Schmid, David; Spekkens, Robert W.
  • Erschienen: Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2023
  • Erschienen in: Quantum
  • Sprache: Englisch
  • DOI: 10.22331/q-2023-09-25-1119
  • ISSN: 2521-327X
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Quantum interference phenomena are widely viewed as posing a challenge to the classical worldview. Feynman even went so far as to proclaim that they are the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mtext class="MJX-tex-mathit" mathvariant="italic">only mystery</mml:mtext></mml:mrow></mml:math> and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mtext class="MJX-tex-mathit" mathvariant="italic">basic peculiarity</mml:mtext></mml:mrow></mml:math> of quantum mechanics. Many have also argued that basic interference phenomena force us to accept a number of radical interpretational conclusions, including: that a photon is neither a particle nor a wave but rather a Jekyll-and-Hyde sort of entity that toggles between the two possibilities, that reality is observer-dependent, and that systems either do not have properties prior to measurements or else have properties that are subject to nonlocal or backwards-in-time causal influences. In this work, we show that such conclusions are not, in fact, forced on us by basic interference phenomena. We do so by describing an alternative to quantum theory, a statistical theory of a classical discrete field (the `toy field theory') that reproduces the relevant phenomenology of quantum interference while rejecting these radical interpretational claims. It also reproduces a number of related interference experiments that are thought to support these interpretational claims, such as the Elitzur-Vaidman bomb tester, Wheeler's delayed-choice experiment, and the quantum eraser experiment. The systems in the toy field theory are field modes, each of which possesses, at all times, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>b</mml:mi><mml:mi>o</mml:mi><mml:mi>t</mml:mi><mml:mi>h</mml:mi></mml:math> a particle-like property (a discrete occupation number) and a wave-like property (a discrete phase). Although these two properties are jointly possessed, the theory stipulates that they cannot be jointly <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi><mml:mi>n</mml:mi><mml:mi>o</mml:mi><mml:mi>w</mml:mi><mml:mi>n</mml:mi></mml:math>. The phenomenology that is generally cited in favour of nonlocal or backwards-in-time <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow class="MJX-TeXAtom-ORD"><mml:mtext class="MJX-tex-mathit" mathvariant="italic">causal influences</mml:mtext></mml:mrow></mml:math> ends up being explained in terms of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mi>f</mml:mi><mml:mi>e</mml:mi><mml:mi>r</mml:mi><mml:mi>e</mml:mi><mml:mi>n</mml:mi><mml:mi>c</mml:mi><mml:mi>e</mml:mi><mml:mi>s</mml:mi></mml:math> about distant or past systems, and all that is observer-dependent is the observer's <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi><mml:mi>n</mml:mi><mml:mi>o</mml:mi><mml:mi>w</mml:mi><mml:mi>l</mml:mi><mml:mi>e</mml:mi><mml:mi>d</mml:mi><mml:mi>g</mml:mi><mml:mi>e</mml:mi></mml:math> of reality, not reality itself.</jats:p>
  • Zugangsstatus: Freier Zugang