• Medientyp: E-Artikel
  • Titel: Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies
  • Beteiligte: Coroadinha, Ana Sofia
  • Erschienen: MDPI AG, 2023
  • Erschienen in: Cells
  • Sprache: Englisch
  • DOI: 10.3390/cells12050732
  • ISSN: 2073-4409
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Gene therapy relies on the delivery of genetic material to the patient’s cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.</jats:p>
  • Zugangsstatus: Freier Zugang