• Medientyp: E-Artikel
  • Titel: Altered Extracellular Vesicle miRNA Profile in Prodromal Alzheimer’s Disease
  • Beteiligte: Visconte, Caterina; Fenoglio, Chiara; Serpente, Maria; Muti, Paola; Sacconi, Andrea; Rigoni, Marta; Arighi, Andrea; Borracci, Vittoria; Arcaro, Marina; Arosio, Beatrice; Ferri, Evelyn; Golia, Maria Teresa; Scarpini, Elio; Galimberti, Daniela
  • Erschienen: MDPI AG, 2023
  • Erschienen in: International Journal of Molecular Sciences
  • Sprache: Englisch
  • DOI: 10.3390/ijms241914749
  • ISSN: 1422-0067
  • Schlagwörter: Inorganic Chemistry ; Organic Chemistry ; Physical and Theoretical Chemistry ; Computer Science Applications ; Spectroscopy ; Molecular Biology ; General Medicine ; Catalysis
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Extracellular vesicles (EVs) are nanosized vesicles released by almost all body tissues, representing important mediators of cellular communication, and are thus promising candidate biomarkers for neurodegenerative diseases like Alzheimer’s disease (AD). The aim of the present study was to isolate total EVs from plasma and characterize their microRNA (miRNA) contents in AD patients. We isolated total EVs from the plasma of all recruited subjects using ExoQuickULTRA exosome precipitation solution (SBI). Subsequently, circulating total EVs were characterized using Nanosight nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. A panel of 754 miRNAs was determined with RT-qPCR using TaqMan OpenArray technology in a QuantStudio 12K System (Thermo Fisher Scientific). The results demonstrated that plasma EVs showed widespread deregulation of specific miRNAs (miR-106a-5p, miR-16-5p, miR-17-5p, miR-195-5p, miR-19b-3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-296-5p, miR-30b-5p, miR-532-3p, miR-92a-3p, and miR-451a), some of which were already known to be associated with neurological pathologies. A further validation analysis also confirmed a significant upregulation of miR-16-5p, miR-25-3p, miR-92a-3p, and miR-451a in prodromal AD patients, suggesting these dysregulated miRNAs are involved in the early progression of AD.</jats:p>
  • Zugangsstatus: Freier Zugang