• Medientyp: E-Artikel
  • Titel: Specific Zinc-Finger Architecture Required for HIV-1 Nucleocapsid Protein's Nucleic Acid Chaperone Function
  • Beteiligte: Williams, Mark C.; Gorelick, Robert J.; Musier-Forsyth, Karin
  • Erschienen: National Academy of Sciences, 2002
  • Erschienen in: Proceedings of the National Academy of Sciences of the United States of America
  • Sprache: Englisch
  • ISSN: 0027-8424
  • Schlagwörter: Biological Sciences
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <p> The nucleocapsid protein (NC) of HIV type 1 (HIV-1) is a nucleic acid chaperone that facilitates the rearrangement of nucleic acid secondary structure during reverse transcription. HIV-1 NC contains two CCHC-type zinc binding domains. Here, we use optical tweezers to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of wild-type and several mutant forms of HIV-1 NC with altered zinc-finger domains. Although all forms of NC lowered the cooperativity of the DNA helix-coil transition, subtle changes in the zinc-finger structures reduced NC's effect on the transition. The change in cooperativity of the DNA helix-coil transition correlates strongly with in vitro nucleic acid chaperone activity measurements and in vivo HIV-1 replication studies using the same NC mutants. Moreover, Moloney murine leukemia virus NC, which contains a single zinc finger, had little effect on transition cooperativity. These results suggest that a specific two-zinc-finger architecture is required to destabilize nucleic acids for optimal chaperone activity during reverse transcription in complex retroviruses such as HIV-1. </p>
  • Zugangsstatus: Freier Zugang