• Media type: E-Article
  • Title: Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography
  • Contributor: Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U.; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz
  • imprint: Proceedings of the National Academy of Sciences, 2017
  • Published in: Proceedings of the National Academy of Sciences
  • Language: English
  • DOI: 10.1073/pnas.1710742114
  • ISSN: 0027-8424; 1091-6490
  • Origination:
  • Footnote:
  • Description: <jats:title>Significance</jats:title> <jats:p>X-ray computed tomography (CT) imaging has become popular for investigating, nondestructively and three-dimensionally, both external and internal structures of various specimens. However, the limited resolution of conventional laboratory-based CT systems (≥500 nm) still hampers the detailed visualization of features on the low nanometer level. We present a laboratory CT device and data processing pipeline to routinely and efficiently generate high-resolution 3D data (≈100 nm) without requiring synchrotron radiation facilities. Our setup is especially relevant for conducting detailed analysis of very small biological samples, as demonstrated for a walking appendage of a velvet worm. Comparative analyses of our CT data with those obtained from other popular imaging methods highlight the advantages and future applicability of the nanoCT setup.</jats:p>
  • Access State: Open Access