• Media type: E-Article
  • Title: Ordered deficient perovskite La2/3TiO3 films grown via molecular beam epitaxy
  • Contributor: Weng, Joan; Shin, Hyungki; Godin, Simon; Oudah, Mohamed; Sutarto, Ronny; Pons, Rebecca; Davidson, Bruce A.; Zou, Ke
  • imprint: American Vacuum Society, 2023
  • Published in: Journal of Vacuum Science & Technology A
  • Language: English
  • DOI: 10.1116/6.0003091
  • ISSN: 0734-2101; 1520-8559
  • Keywords: Surfaces, Coatings and Films ; Surfaces and Interfaces ; Condensed Matter Physics
  • Origination:
  • Footnote:
  • Description: <jats:p>As the parent compound of a promising solid electrolyte material Li3xLa2/3−xTiO3, the perovskite La2/3TiO3 has potential for advancing research on Li-intercalated ionic conductors. Epitaxial La2/3TiO3 films have been grown by molecular beam epitaxy using a growth process consisting of deposition and annealing cycles, with in situ monitoring by electron diffraction. X-ray absorption spectroscopy confirms the tetravalent state of Ti in La2/3TiO3, and the as-grown films are insulating. X-ray diffraction reveals the presence of half-order peaks, indicating a doubling of the pseudocubic perovskite unit cell due to the ordering of La vacancies in alternating A-site layers. These results demonstrate that single-phase, vacancy-ordered epitaxial films of La2/3TiO3 can be stabilized with excellent crystalline and electronic properties over wafer-sized areas, making possible Li-ion intercalation studies in films with well-defined domain boundary properties. Such boundaries are known to profoundly influence Li-ion conduction within the material. Understanding the effects of domain boundaries on Li-ion conduction could lead to improvements in solid-state battery technology and pave the way for the development of more efficient and safer energy storage devices.</jats:p>