• Medientyp: Elektronische Hochschulschrift; E-Book; Sonstige Veröffentlichung
  • Titel: Generative Neural Networks to infer Causal Mechanisms : algorithms and applications ; Réseaux de neurones génératifs pour la découverte de méchanismes causaux : algorithmes et applications
  • Beteiligte: Kalainathan, Diviyan [VerfasserIn]
  • Erschienen: theses.fr, 2019-12-17
  • Sprache: Englisch
  • Schlagwörter: Apprentissage profond ; Réseaux de neurones génératifs ; Causalité ; Causal Discovery ; Deep Learning ; Generative Neural Networks ; Adversarial Neural Networks ; Réseaux de Neurones adversariaux
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: La découverte de relations causales est primordiale pour la planification, le raisonnement et la décision basée sur des données d'observations ; confondre corrélation et causalité ici peut mener à des conséquences indésirables. La référence pour la découverte de relations causales est d'effectuer des expériences contrôlées. Mais dans la majorité des cas, ces expériences sont coûteuses, immorales ou même impossible à réaliser. Dans ces cas, il est nécessaire d'effectuer la découverte causale seulement sur des données d'observations. Dans ce contexte de causalité observationnelle, retrouver des relations causales introduit traditionellement des hypothèses considérables sur les données et sur le modèle causal sous-jacent. Cette thèse vise à relaxer certaines de ces hypothèses en exploitant à la fois la modularité et l'expressivité des réseaux de neurones pour la causalité, en exploitant à la fois et indépendences conditionnelles et la simplicité des méchanismes causaux, à travers deux algorithmes. Des expériences extensives sur des données simulées et sur des données réelles ainsi qu'une analyse théorique approfondie prouvent la cohérence et bonne performance des approches proposées. ; Causal discovery is of utmost importance for agents who must plan, reason and decide based on observations; where mistaking correlation with causation might lead to unwanted consequences. The gold standard to discover causal relations is to perform experiments.However, experiments are in many cases expensive, unethical, or impossible to realize. In these situations, there is a need for observational causal discovery, that is, the estimation of causal relations from observations alone.Causal discovery in the observational data setting traditionally involves making significant assumptions on the data and on the underlying causal model.This thesis aims to alleviate some of the assumptions made on the causal models by exploiting the modularity and expressiveness of neural networks for causal discovery, leveraging both conditional ...
  • Zugangsstatus: Freier Zugang