• Medientyp: E-Artikel
  • Titel: Development of a Water Based Process for Stable Conversion Cathodes on the Basis of FeF3
  • Beteiligte: Pohl, Alexander Herald; Faraz, Mohammadkazem; Schröder, Andreas; Baunach, Michael; Schabel, Wilhelm; Guda, Alexander; Shapovalov, Viktor; Soldatov, Alexander; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Witte, Ralf; Hahn, Horst; Diemant, Thomas; Behm, Rolf Jürgen; Emerich, Hermann; Fichtner, Maximilian
  • Erschienen: The Electrochemical Society, 2016
  • Erschienen in: ECS Meeting Abstracts
  • Sprache: Nicht zu entscheiden
  • DOI: 10.1149/ma2016-03/2/632
  • ISSN: 2151-2043
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p> A facile water based synthesis method for HTB-FeF<jats:sub>3</jats:sub>/rGO and <jats:italic>r</jats:italic>-FeF<jats:sub>3</jats:sub>/rGO composites was developed using FeF<jats:sub>3</jats:sub> nanoparticles prepared by ball-milling and aqueous graphene oxide precursor. Electrodes of HTB-FeF<jats:sub>3</jats:sub>/rGO were cast in ambient air and the calendered electrode shows a stable specific energy of 470 Wh kg<jats:sup>–1</jats:sup> (210 mAh g<jats:sup>–1</jats:sup>, 12 mA g<jats:sup>−1</jats:sup>) after 100 cycles in the range 4.3–1.3 V with very little capacity fading. The good cycle stability is attributed to the intimate contact of FeF<jats:sub>3</jats:sub> nanoparticles with reduced graphene oxide carbon surrounding. Using a combination of in situ XRD, XAS and ex situ Mössbauer spectroscopy, we show that during discharge of HTB-FeF<jats:sub>3</jats:sub>/rGO composite Li is intercalated fast into the tunnels of the HTB-FeF<jats:sub>3</jats:sub> structure up to <jats:italic>x</jats:italic> = 0.92 Li. The Li intercalation is followed by slow conversion of HTB-Li<jats:sub>x</jats:sub>FeF<jats:sub>3</jats:sub> to LiF and Fe nanoparticles below 2.0 V. During charge, the LiF and Fe phases are slowly transformed to amorphous FeF<jats:sub>2</jats:sub> and FeF<jats:sub>3</jats:sub> phases without reformation of the HTB-FeF<jats:sub>3</jats:sub> framework structure. At an elevated temperature of 55 °C a much higher specific energy of 780 Wh kg<jats:sup>−1</jats:sup> was obtained.</jats:p> <jats:p> </jats:p> <jats:p> <jats:inline-formula> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="632fig1.jpeg" xlink:type="simple" /> </jats:inline-formula> </jats:p> <jats:p>Figure 1</jats:p> <jats:p />
  • Zugangsstatus: Freier Zugang