• Medientyp: E-Artikel
  • Titel: The Effects of Residual Stress Distributions on Indentation‐induced Microcracking in B4C–TiB2 Eutectic Ceramic Composites
  • Beteiligte: White, Ryan M.; Dickey, Elizabeth C.
  • Erschienen: Wiley, 2011
  • Erschienen in: Journal of the American Ceramic Society
  • Sprache: Englisch
  • DOI: 10.1111/j.1551-2916.2011.04664.x
  • ISSN: 0002-7820; 1551-2916
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The boron carbide (<jats:styled-content style="fixed-case">B<jats:sub>4</jats:sub>C</jats:styled-content>) titanium diboride (<jats:styled-content style="fixed-case">TiB<jats:sub>2</jats:sub></jats:styled-content>) ceramic eutectic is being investigated for armor and tribological applications. Electron diffraction shows [11<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace4664-math-0001.gif" xlink:title="urn:x-wiley:00027820:media:jace4664:jace4664-math-0001" />0] <jats:styled-content style="fixed-case">TiB<jats:sub>2</jats:sub></jats:styled-content>//[21<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace4664-math-0002.gif" xlink:title="urn:x-wiley:00027820:media:jace4664:jace4664-math-0002" />1] <jats:styled-content style="fixed-case">B<jats:sub>4</jats:sub>C</jats:styled-content>//growth direction, (0001) TiB<jats:sub>2</jats:sub>//(<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace4664-math-0003.gif" xlink:title="urn:x-wiley:00027820:media:jace4664:jace4664-math-0003" />2<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/jace4664-math-0004.gif" xlink:title="urn:x-wiley:00027820:media:jace4664:jace4664-math-0004" />0) <jats:styled-content style="fixed-case">B<jats:sub>4</jats:sub>C</jats:styled-content> is parallel to the interface plane, and transmission electron microscopy (<jats:styled-content style="fixed-case">TEM</jats:styled-content>) imaging reveals no interface phase. Thermal residual stress distributions are calculated via finite element modeling of an experimental eutectic microstructure. The <jats:styled-content style="fixed-case">B<jats:sub>4</jats:sub>C</jats:styled-content> matrix is found to be about 400 MPa in compression, and the <jats:styled-content style="fixed-case">TiB<jats:sub>2</jats:sub></jats:styled-content> lamellae approximately 1.3 GPa in tension. Stress and strain energy concentrations are found at the tips of <jats:styled-content style="fixed-case">TiB<jats:sub>2</jats:sub></jats:styled-content> lamellae. <jats:styled-content style="fixed-case">TEM</jats:styled-content> of deformed materials correlates well with the finite element calculations, showing preferential fracture in areas of stress concentration. Interfacial delamination and crack deflection are also observed in deformed materials.</jats:p>