• Medientyp: E-Artikel
  • Titel: A Heat Transfer Model of Grinding Process Based on Energy Partition Analysis and Grinding Fluid Cooling Application
  • Beteiligte: Yin, Guoxu; Marinescu, Ioan D.
  • Erschienen: ASME International, 2017
  • Erschienen in: Journal of Manufacturing Science and Engineering
  • Sprache: Englisch
  • DOI: 10.1115/1.4037241
  • ISSN: 1087-1357; 1528-8935
  • Schlagwörter: Industrial and Manufacturing Engineering ; Computer Science Applications ; Mechanical Engineering ; Control and Systems Engineering
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>In the grinding process, high temperature in grinding area is generated by the frictional resistance between workpiece and abrasive grains on the grinding wheel cylindrical surface. Grinding fluid application is an optimal option to reduce the thermal effect and crack on the workpiece ground surface. In this paper, a grinding process heat transfer model with various grinding fluid application is introduced based on computational fluid dynamics (CFD) methodology. The effect of specific heat, viscosity, and surface tension of grinding fluid are taken into account. In the model, the grinding contact area is considered as a heating resource. Most of the heat energy is conducted into the workpiece. The rest of the energy is taken away by the grinding wheel, grinding fluid, and chips. How many percentage of the generated heat is conducted into the workpiece is a key issue, namely, the energy partition ratio ε. An energy partition equation is introduced in this paper with the cooling effect of different grinding fluid. Generated heat energy based on the calculation from energy partition equation is applied on the grinding contact area in the heat transfer model.</jats:p>